haeonaiid $

o

$

GPO PRICE
OTS PRICE(S) $

VRE g !
E‘z‘ k‘!f:

) PRELIVINARY DATS

PLASMA RESEARCH

CASE INSTITUTE OF TECHNOLOGY

A IR

Sl N65-19888

- \\’: (AO' sssssssssss (TH?U,
™ v/ ;

((((((

L
o - {pAGES)
2 / 7 b .7 22—
0 7»“ A 7 / ,»)’ oot S
X A ) 77D )
(NASA CR OR TMX OR AD NRUMBER) EGORY)

Hard copy (HC)
Microfiche (MF)

UNIVERSITY CIRCLE e« CLEVELAND 6, OHIO



I}

E B R N I I I B B =Eam

hob19¥
TRANSPORT PROPERTIES OF A- TURBULENT
LORENTZ GAS¥
by
Eugene N, Frank

Technical Report No. A=33

January, 1965

¥Supported in part by the National Aeronautics and Space
Administration. A Thesils Submitted to Case Institute of
Technology in partial fulfillment of the Requirements for
the Degree of Doctor of Philosophy.



b

| \0\%(b | \a88%

The flelds of a turbulent Lorentz gas with average
magnetic field are expressed in terms of fluctuating quantities.
The equations of conservation of maomentum and matter are used
along with Maxwell's equations to obtain a Fourier analyzed
momentum equation 1n terms of the fluctuating velocities alone.
Non=linear terms are linearized through the use of a dynamic
viscosity-like term after Heisenberg. The study is then
restricted to a semi-compressible plasma, It is found that
in general six modes of wave motion are possible; three are
modified classical modes and the others are mixed or "turbue
lent modes" which express the cross correlation between the
classical modes present in the turbulence, Numerical results
are obtained for the indices of refraction and the mobilities
for the various modes. One of the most important results of
the analysis is the appearance of an enhanced diffusion above
a certain critical value of the magnetic field.
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CHAPTER I
INTRODUCTION

1.1 Turbulence and Plasma Dynamics

Collective fluctuating phenomena in ionized gases have

been known to exlst in several situations. It has often been

argued, for instance, that ionized matter in interstellar
space 1s In a state of turbulence due to the large Reynolds

number assoclated with the flow f‘:lelds,l

In a totally dif=-
ferent situatlon, investigators have reported on the random
appearance of the magnetic and velocity fields accompanying
a collapsing pinch.2 It 1s also known to workers in gas
discharges that the density of the plasma and the electro-
magnetic field radiated from the positive colum of the
discharge exhibits a predominately statistical character
implying that the plasma 1s essentially in a state of turbu=
lence.3
There have been some arguments that the fluctuations
encountered in the phenomena described above do not actually
correspond to a turbulent state of the plasma as understood
in a classical sense but are due rather to the presence of
microinstabilities.u This fine distinction is felt to be
artificial and the point of view adopted here is that the
character of the fluctuating field is akin to that of the

usually recognized turbulent field.
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In order to clarify the nature of these fluctuations scme
of the characteristic features of a turbulent field will be
summarized. Turbulent motion 1s characterized by the fact
that if the veloclty, for example, 1s measured under seemingly
identical conditions, the values obtained are found to be a
random function of position and time. For the sake of simpli-
city restriction is made to homogeneous turbulence for which
the probabilities associated with random quantities are inde-
pendent of spatial tr'anslation.5

It turms out that the velocity and other field quantities
are continuous functions of space and time so that they may
be Fourier analyzed. This Fourier analysis is a resolution
into camponents of different linear size since the wave-
length 1s a parameter specifying the different Fourier come
ponents., Turbulent motion may therefore be thought of as
consisting of the superposition of a large number of different
sized components which make additive contributions to the
field quantity. These components interact with each other in
a way demanded by the nonelinear terms in the equation of

motion, If this equation were linear, the excitation of one

‘of the components would not involve the others; however, it

1s precisely these nonelinear terms which produce the tur-
bulence by requiring coupling between modes,

From probability theory it can be shown that turbulent



motion 1s completely specified by the complete set of averw
aged products of the fleld vectors., When the turbulence is
homogeneous thls average may be a spatial one. Two types of
averaged products which are germane to this work are the
first order and second order product mean values.

For example, if the field quantity chosen is the velocity

WD)y = Tl/pf"fé (r)dL (11)

is the first order product mean value., Here V is the volume
over which the average 1s taken and r is the position vector.

The second order product mean value is
I
, , N ) /
A (WA-x 1 = TN A (V- ) A v (1-2)

and is better known as the "velocity correlation". The vector
re-r' is the separation in space between the locations at which
the partial products are measured. in (1l=2) the partial
products are, of course, functions of position and time so
that the velocity correlation is in general a function of time.

Throughout this investigation turbulence will be studied
as resulting from the dynamics of a plasma fluid so that

moments of the Boltzmanmn=Vlasov equation are involved. This is
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in contradistinction to a totally different technique in which
solutions of the Boltzmann-Vlasov equation exhibiting a random

character are considered.

1,2 Critical Survey of Hydromagnetic Turbulence

In early work on hydromagnetic turbulence, the line of
approach often consisted in reasoning similar to that of
classical hydrodynamic turbulence (Bat:chelor6 and Lee7).
Batchelor, for instance, employed an analogy between the
magnetic fleld and the vorticity field of hydrodynamics ob-
taining conditions under which growth of the average magnetic
field would take place assuming the presence of small spone
taneous flelds., More recently this problem of the growth of
a magentic field in a turbulent conducting fluid has been
considered by Pao.8

Since 1952 there have been two main lines of attack
used in the study of plasma turtulence. In the first, one
starts with the equations for the conservation of momentum
and matter, assumes homogeneity and isotropy of the field,
and derives spectral energy densities for the field in terms
of correlation functions. This method will be referred to
as he "deductive approach". In the other line of reasoning,
certaln heuristic assumptions are made to account for the

transfer of turbulent energy between different Fourier



components of the flow field, This second line of attack will
be referred to as the "heuristic approach". The more salient

aspects of this recent work are summarized below.

1.2.1 Deductive Approach

One of the first serlous attempts to develop a deductive
theory of turbulence in a plasma is that of S, Chandrasekhar.9
Chandrasekhar's theory 1s based on earlier work concerned
with classical turbulence in a incompressible f‘luid.10 This
theory of plasma turbulence includes the following assumptions:

(1) The conducting fluid is incompressible,

(2) In the spirit of the usual approximations of MHD,
charge neutrality prevails and the displacement
current is neglected,

(3) The turbulent field is homogeneous,

(4) A stationary state prevalls so that energy supplied
to maintain turbulence is dissipated thermally,

(5) The assumption of isotropy is made which requires
that the time average of any function of the field
quantities defined with respect to a particular set
of axes 1s Invariant under arbitrary rotations and
reflections of the axes of reference,

(6) Correlations are introduced between uy and h T the

fluctuating velocity and magnetic field, at two
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different points and at two different times. By
Introducing the time interva: into the definition

of the correlations, Chandraseknar is able to accoun
for the phase correlation effects in turbuient
motion, The important assumption he makes here is
that these correlations depend only on the difference
in times t'=t" as far as the time devendence is
concerned,

(7) It is assumed that all correlations which include an
odd number of components of h,j will vanish identi-
cally, and finally

(8) The fourth order products introduced are assumed to
be directly related to the second moments as in a
normal dlstribution,

Of the many correlations introduced in Chandrasekhar's

theory, of special interest in the present context are

Qi = W brithyuy (=€) (1-3)

and

(.7 Vo, g
Hoo= he (et V(e (1-1)
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The importance of the quantities Qij and Hi,j is due to
the féct that their Fourier transforms describe how the energy
associated with each velocity or magnetic field component is
distributed over the various wave-numbers and frequencies
in a harmonic resolution of the turbulent f‘ields;.5 These quane
tities are also important in that they provide a measure of the
scale of the turbulent fields,

Under the assumptions enumerated above it can be shown

that

Qij= VxRt &ysy (v —~'), (1-5)

and

Hes = VX HOG6)€ g (w0 <), (1-6)
where Q(r,t) and H(r,t) are defining scalars of the tensors in
question. The quantity ch"vis a unit alternating tensor
having the values El;,, /@:O when k, J and k are not all different;
€ cu‘ “:1-[ or =1 when k, J and k are all different and in cyclic
or acyclic order respectively.

In terms of Q and H the equation of motion for the fluid

becames
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& <§?’-_ T*08)Q

- _ a2 >
= QQJ\, @Q—)HQ‘;DSH)

(1l=7)
wheres—* 1s the kinematic viscosity and
)2 n-!t 2 _
D/) = )—;__"' P Y V2 S ol (1-8)

Another equation relating Q and H is developed from the
ejquation involving the magnetic field. In conjunction with
(1=7) there results a system connecting Q and H, The conse=
quences of thils system are pursued further for the case of
zero viscosity and infinite conductivity with Kolmogoroff's
law for the defining scalars being confirmed,

Of major interest here is (1-7) which represents the
equation of motion. Chandrasekhar extended the Heisenberg

approach to hydromagnetic turbulence in view of the symmetry
of Q and H in this equation,

1.2.2 Heuristic Approach

1.2,2,1 Work of Chandrasekhar. In a subsequent paper on

hydromagnetic turbulence Chandrasekhar points out that the



0=
equation
22 2,2 2
3%( 3= T O ) Q= — 285¢ DgQ (1-9)

in the framework of ordinary hydrodynamics is, in the framework
of hydromagnetics, replaced by (1=7). Now the equation for the
time rate of change of the spectrum of kinetic energy in ordine
ary hydrodynamics is

_é_a\:(m S&( k ,MJU

oo
=SB AR ~ ryn

(1-10)

where F(k) is the spectral function giving the energy density
in kespace involved in Fourler components (or eddies) of wave=
number k., Q(v,k'; v,k) is the transition probability such that
the first integral gives the energy contributed by larger
eddles and the second integral gives the energy lost to smaller
eddies, Since Q and H appear symmetrically in (1l=7) and in
view of (1=9) and (1-10) Chandrasekhar extended (1-10)

tc hydromagnetics by the relation
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% hoyh, b )= F(A)Ai

(1-11)

where Q(h,k'; v,k) and Q(v, k; h,k") are transition probabilities
between the velocity and magnetic turbulent fields,
.‘ Letting G(k) be the spectrum of the turbulent magnetic
fleld, Chandra.sekha.,r‘; writes the following
1w, j@a (n k') b
(1=12;
- 4:; th, 4‘;"54&”)45/— X*@U’L) 4”1)
where the Integrals are representative of eddy energy transfer
as above, The last term represents losses due to Joule dise
sipation of the magnetic energy associated with the kth mode
and A ¥ stands for the resistivity., Equation (1-10) is recog=-

nized as the extension to hydramagnetics of the equation giving
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the time rate of change of the magri:tic energy density in
ordinary hydrcdynamics of the equation giving the time rate
of change of the magnetic energy density in ordinary hydroe
dynamlcs which does not involve the transition integrals,

The assumption 1s made that the velocity=velocity trane
sition probability is given by the Helsenberg form

Q~ /lej' k)= F (&’)IRILJ‘('LL”)) (1-12a)
where

W( A
o (k)= K Ei—;—l . (1-13)

Due to the fact that Q and H appear symmetrically in
(1=7) the transition probability involving h 5 and vy is written

in the form
QUby ke jar k)= CUKT A(RY) Gt
where
Glt)
M k)= K TF 1e15)



with the assumption that K 1s the same numerical constant
as in (1-13), By integrating over k and using both (1-10) and
(1=11) the generalization to hydromagnetics of the well=known

equation of Heisenberg 1s obtained and is
k
g ;%:j b/ LR +6(4)]

f‘m (e F(4") (1-16)
+ (X4 0,) 6 (4 )]+
Another result of Chandrasekhar which he arrives at by

assuming stationary turbulence, infinite conductivity and
zero viscosity is that two turbulent "modes" are possible
with different values of the ratio of magnetic to kinetic ene
ergy for the same wave number,

It might be mentioned here that a few other studies exist
concerning the energy spectrum in magneto=fluid turbulence

12 and Tat:sumi.:L3 Tatsuml feels that

such as those of Delssler
Chandrasekhar's treatment of the magneticevelocity transition
probability is questionable since the magnetic field has no
means of adjustment within its own spectrum as does the velocity
field due to the linearity of Maxwell's equations. Kra:l.chnanlll
has also criticlzed Chandrasekhar's assumption (8) connecting
the fourth-order and second-order moments showing that there
results ﬁo transfer of energy between eddies and the creation

of energy by each mode,
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It should be pointed out that one of the most restric-
tive assumptions made in all of the above mentioned treate
ments 1s that of the incompressibiliivv oi’ the conducting fluid,
In effect this procedure removes all possible fluctuation of
the charge density which is unrealistic in most cases. In
the presence of an average magnetic field the assumticn of
isotropy which is usually made is also to be questioncd,

1.2.,2,2 Work of Yoshikawa., Taking compressibility and

anisotropy effects into account Yoshikawa and Rose developed
a theory of plasma turbulence in an attempt to explain the

anomalous diffusion of the magnetic I‘ielci.lS’16

Classical
theory based on the linearized Boltzmann-Vlasov equation pree
dicts a l/B2 dependence of the diffusion on the magnetic field,
B. On the other hand, it has been observed that as a result
of the collective random ascillations in a plasma the diffusion
shows a 1/B dependence;l7 The term "anomalous" diffusion is
frequently used in the literature for the latter effect.

The assumptions made by Yoshikawa and Rose in their treat-
ment are as follows:

(1) The plasma is macroscopically homogeneous and sube

Ject to homogeneous turbulence,

(2) A small pressure gradient is introduced,

(3) A uniform average electric field is introduced,

(4) The ions are assumed immobile,



(5)

(6)
(7N

(8)

(9)

(10)

The effect of the fluctuation of the magnetic field
is neglected which essentially means that the kie
netic pressure 1s much smaller than the magnetic
pressure,

Temperature 1s assumed indenendent of vosition,

The 1rert’: term of the momentum equation is neg-
lected which 1s justified by assuming the drift ve=
locity is much smaller than the average thermal ve-
locity,

Cross terms in the equation for the kth harmonic are
neglected,

The plasma i1s considered to be in a steady state so
that partials with respect to time vanish, and
Isotropy 1s introduced in order to obtain results

from the complex system of equations obtained.

Under these assumptions the momentum equation for the field

quantities becomes

—/
enE#—En_t_:_-!-e(/;xf_s_):-m\)L]‘e) (1-17)

where e 1is the charge of the electron, n the number density, E

the fluctuating electric field, E' the effective average fleld

which includes a contribution from the density gradient, l;a

the drift current which is the product of the number density and



s
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the velocity, m the mass of the electron and ), the Cou=-
lomb collision frequency.

Equation (1-17) is the Fourier analyzed by means of ex=
panding all fluctuating quantities in Fourler series; i.e.,

e
=5 _1_: ‘2L (1-18)

| ™

~ /! 14
(e =L +% F,ne (1-19)

and

(v
'; (1=20)

/
Nzm,*2n e

where the subscript k refers to the kth harmonic, the zero sube
script indicates average values and the prime signifies that the
value k = 0 1is excluded from the sum. Due to the independence
of the various Fourier harmonics ther results for the zeroth

harmonic
/ - /
el ME ptent +e([x8)=

=Y, Z( )r,L MV, r (1-21)
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and for the kth harmonic

e”ofk_’f‘ GH&E/‘F e (_I:KX_B_)
+ (Crpaa Levmn)

— ﬂi@.)
= ”ofn‘”%( Mo E > (1-22)

In accordance with assumption (8) the cross terms in (1=22)
are to be neglected. Now in conjunction with (l=21) and the
Maxwell equations

V xE=0 (1-23)

and

V:Te =0, (1=24)

it 1s possible to write E and E_ 4 in terms of n ,E', and _r; .

Writing Io as a vector with components

Te=(r 5 R, (1-25)

and after some manipulations which include the assumtion of

isotropy, Yoshikawa obtains for the x-component of the drift curw

rent
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where S is the mean square deviation of the density fluctuation
to be obtained experimentally, Nctice that for large magnetic
fields I';\ is proportional to 1/B in accordance with anomalous
diffusion., It is to be emphasized that (1-26) represents an
average drift current as is clear from the fact that it 1s essen-
tially obtained from the zero-order or average-value equation
(1=21).,

1.3 Purpose of the Present Study

The aim of this investigation is to derive the governing
relation for transport processes in a turbulent plasma. The
argument begins with the conservation equations for momentum
and mass which 1s the traditional approach except that account
is taken of compressibility and of magnetic field fluctuations.
In deriving the master equations terms up to second order are
retained. Unlike the work of Yoshikawa and Rose, this treate
ment 1s general enough to include the case of no average drift
in the plasma for which the second order terms involving cross
coupling of the fluctuating momentum, electric, and magnetic
fields becomes important. The advantage of this added compli-

cation 1s that the results can be applied to the case of the hot



=18=-

plasma whereas the predlctions of the Yoshikawa and Rose
study are not applicable at high temperatures in general,

This study is concerned with a turbulent Lorentz gas which
may be thought of as a gas of electrons in a neutralizing field
of positive ions which are assumed immobile., Most of the as-
sumptions made by Denisse and Delcroix18 in treating the linear
equations of motion will be made and are discussed in the next
chapter. The difference here, of course, is that the non=
linear terms of the momentum equation are retained and the motion
of the ions 1is neglected. Neglect of ionic motion is justified
for turbulent waves of frejuency much higher than the ion-
cyclotron frequency.

The assumptions upon which the theory is based are as
follows:

(1) The effect of the non-linear terms in the momentum
equation on each Fourier camponent is dependent on a
dynamic viscosity which is independent of the fre=
quency or wave number of the component. The way that
the dynamic viscosity enters into the equations for
turbulent motion 1s slightly more general than its use
by Helisenberg since it appears in an anisotropic way.
In chapter two Tchen's approach to turbulent energy
transfer 1s summarized, two of his intermediate equa=

tions being used to introduce the dynamic viscosity
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into the momentum equations., The essence of the

heuristic assumption made 1s that the wave numbers ine

volved in producing gradients are distinct in function
from the wave numbers involved in the turbulent vise
cosity.

(2) Energy transfer between eddies is assumed to take place
locally; i.e., it involves wave numbers of approxi-
mately the same value, For a discussion of this point
in the hydrodmamic case reference may be made to a

paper by Tanenbaum, 13
(3) Third and higher terms in the turbulent quantities

are neglected,

The approach taken in this study 1s rather general in the
sense that it may be extended to include the two fluid case or
situations of even greater complexity. Since provision is made
for anisotropy it is possible to be relatively confident of the
results in the presence of an average magnetic field, In these
two respects it is felt that the theory 1s an improvement over
that of Yoshikawa since his method seems to rely on the simple
form of the kth order equation and in addition isotropy is ase
sumed rather early in the development, The approximations made
in the present work are introduce in a straightforward manner so
that perhaps the development is a little clearer than in Yoshie
kawa's case, The two terms dropped by Yoshikawa are retained;



i.e., the ilnertia term and the term due to fluctuations of the
magnetic fields,

In comparing the present approach with that of Chandrase-
khar it is to be noted that compressibility is taken into ace
count which greatly extends the generality of the theory.
During the development of the theory both the electric and mage
netic filelds are given explicitly as functions of the fluctuae-
ting velocities alone., This result should aid in future analysis
of energy spectra and makes the Chandrasekhar method of repla-
cing non=linear terms in the magnetic field by an effective re-
sistivity suspect in view of the way the velocity correlations
enter into these terms,

One limiting feature of the approach used here is that it
is applicable only to Fourler components of frequency higher
than the cyclotron frequency of the ions not oniy because of
the neglect of lonlc motion, but also due to the fact that ase
sumption (1) above does not hold for low frequencies; As a cone
sequence the equivalent of the kth order equation of Yoshikawa
is employed rather than the zeroth order equation he used to
study D.C. diffusion.

1l.4 Procedure to be Followed in the Present Study

In chapter two the analysis of a turbulent Lorentz gas 1s

begun by writing the momentum equation including all non-linear



contributions, The field quantities are expressed as an
average plus a fluctuating part, the fluctuating vart being
expressible in terms of Fourler integrals., Proceeding in this
way it 1s possible to write the momentum equation in terms of
fluctuating quantities carrying out a similar procedure for
Maxwell's equations., In the second section of chapter two it is
indicated how Helsenberg came to replace the inertial none
linear term in the hydrodynamic energy equation by a contribue
tion involving a dynamic viscosity. It is outlined how Tchen
went further in studying the Helsenberg and Obukhov theories
of turbulence and developed relations between the velocity
convolution integrals and the dynamic viscosity. To close
the second chapter it is shown how the results of Tchen which
are concerned with hydrodynamics are to be applied in the
hydromagnetic situation studied here,

Since Tchen's integrals provide a means of linearizing
the velocity convolutions, in the first section of chapter three
all fluctuating quantities are expressed in terms of the velo-
cities. An iterative procedure is employed in which it is ase
sumed that the first order fluctuations in the density are much
larger than those of second order. As an initial use of the
integrals developed by Tchen, a relation is obtained giving a
measure of the validity of the iterative procedure. At the end

of the first section, a sumary of the Fourier camponents of the



fluctuating field quantities in terms of the velocities is
glven,

The task undertaken in the second section of chapter three
is to develop a linearized form of the complete momentum equae
tion., This 1s done by expressing the non=linear terms of the
momentum equation in terms of the fluctuating velocities.

These non-linear terms are then linearized by the use of Tchen's
integrals. The general momentum equation obtained for the
Fourier quantities is valid for a compressible plasma with
turbulence subject to the validity of the iteration performed
in the previous section of chapter three, Since the general
momentum equation 1s rather complex, a simplification is made
to include only a semi-compressible Lorentz gas; that is to say ’
all quantities of second order in the fluctuating densities are
dropped. In this way the Fourier momentum equation for a semi-
compressible Lorentz gas 1is obtalned.

In chapter four the mobility tensor and dispersion re-
lations are obtained from the expressions dealing with the semi-
compressible plasma, Since the general results are rather come
plex, detalled study is limited to two degenerate types of pro=
pagation; along the average magnetic field and perpendicular
to the average magnetic field. Modes corresponding to modified
non-turbulent waves, as well as mixed modes; i.e., modes due

strictly to the appearance of the dynamic viscosity terms are
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analyzed under certain simplifying conditions. Equations
yielding indices of refraction, mobilities, and related quan-
titles under the assumed conditions are developed. The chapter
ends with a summary of some of the salient aspects of the de-
generate modes studied,

In chapter five the results of chapter four are put into
a more convenlent form for numerical calculation by the defi-
nition of certain nonedimensional quantities. For the pur=
purposes of comparison, appendix C may be consulted which gives
relations for the indices of refraction and for mobilities
of the non-turbulent case. In the final section of the chapter
the results of the numerical computation are displayed in gra=
phical form,
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CHAPTER II
PLASMA EQUATIONS FOR FLUCTUATING QUANTITIES

2.1 Introduction

It was stated in the previous chapter that the present
study would be restricted to the case of the Lorentz gas.

Thls restriction is not a severe one since there exists a host
of examples of great practical importance to plasma physics
where the Lorentz gas model is quite adequate in describing the
physics of the situation., The anset of turbulent diffusion in
a confined hot plasma or in the current sheet in a coaxial
gun20 can be accounted for almost completely by the electron
gas behavior. Another instance in which electrons dominate
the dynamics of the phenamenon refers to the so-called micro-
instabilitles in a plasma when the characteristic length of the
phenomenon under investigation is much smaller than the ione
Larmor radius,

In the approach used here, being a macroscopic one, it is
implied throughout that the Larmor radius of the electron and
the Debye length are much smaller than the characteristic length
L associated with the plasma fleld. It is also assumed that the
electron temperature does not vary appreciably over the length
L,
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2.2 Conservation Relations and Fluctuating Quantities

The starting point of the argument will be the conservation
relations for the momentum and charged particles in the plasma.
All field parameters are to be expressed in terms of an average
value plus a fluctuating term,

The momentum equation for the electrons which is obtained

from the first moment of the Boltzmann-Vlasov equation 1521

YLy o, X
ot Xy
= -V '¥+ ;?‘e, i&“c"i‘(@x__rj)‘; ]
+ 'oc(: . (2-1)

In the above equation the usual summation convention is used
for repeated indices; also e stands for the electron density,
m the mass and e the charge of the electron, v the macroscopic
velocity of the electrons, Y_— the stress tensor, E and B the
electric and magnetic fieldsTaxperienced by the gas which in-
clude the constant applied electric and magnetic fields E and
_E_', P el the momentum transferred to the electrons per unit volume
per unit time as a result of collisions with ions in the case
of a strongly ionized gas or with neutrals in the case of a
weakly ionized gas,

In evaluating the collision term, Pats acccn.ﬁmt must be

taken of the longe-range nature of the Coulomb force, If
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shlelding effects are neglected, the collision cross-section
tums out to be infinite., In order to obtain finite results,
Spltzer and Cohen took electron and ion correlations into
account by making use of an effective cutaff distance, h, for
the Coulomb f'or'ce.22 The quantity h is referred to as the
Debye length. A more careful analysis making use of the Fokkere
Planck equation with arbitrary electron and ion distribution
functions expanded in terms of Legendre polynomials was made by
Rosenbluth gt._il_.z:3 This analysis showed that the Spitzer and
Cohen formulation is equivalent to retaining the first two
terms of the expanded distribution fumctions. From the Spitzer
approximation it followszu that the collision frequency is a
scalar proportional to w where w 1s the thermal velocity of the
electrons (not to be confused with the turbulent fluctuating

velocities which are on a macroscopic scale) so that
s = = . 2=2
Pm e W (2=2)

The usual assumption that the stress tensor may be re-
placed by a pressure is now made. It is further assumed that
the perturbations caused by the turbulence in the electron gas
are adiabatic leading to the acoustic approximation for the
pressure.

Making use of the above approximations, (2-1) becomes
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where a is the velocity of sound which is considered to be a
constant assuming that any temperature gradients have charac=
teristic lengths much larger than the space scale of the ture

bulence.,

For a fully ionized gas consisting of protons and electrons
the current density is

I = (rz— Npwp)e, (2-4)

and Maxwell's equations are

- e
v-E = L 2/01 , (2-5)
| ’
7 % [_5: = - 3"‘/317) (2<6)
- Y5
VXB= uT +eu /ot (2-7)
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and

V'8 = O, (2-8)
In the above equations, NI is the ion number density, n
the electron number density, vr the macroscopic ion velocity,
/1 the permeability of free space, and €, the dielectric con=-
stant for free space.

The conservation of mass for the electrons is expressed

by
p Va4 g.vﬁ+%%_;0) O (2-9)
where
F =Zmr. (2=10)

It will also be convenient to make use of the wave equation
formed by taking the curl of (2=6) and using (2=7) so that

_ 33 N
VxVRE = =y e SM 3EL . (2-11)

Now each quantity is written as an average plus a fluctua=
ting part; thus, taking the Fourier transform of the quantity
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A there results

1055 —uwt)
A= LFA(kﬂJe dw A

) (2=12)

where A(k,4/ ) is the Fourier coefficient in question. The
limits of integraticn are interpreted to mean that integration
takes place over time scale T and space scale V large compared
with the scales of the turbulence,

Equation (2=12) may be written in the form

A=A+ ?\J) (2-13)
where
A = ,WTJAwf drdt (2-14)
and
X"\S_‘:A ’(éw)tidét—w“'ivc‘é_. (2-15)

The primes indicate that the values k=0and W =0 are

excluded.

In a frame for which Z = 0 the momentum equation becomes



«30=

2
<

‘QJ

+

(U}

3
I}
{

PN’

vix

4+
~ o~
'3
b’
Y
p Lo
o,
H J

qz
o
LY

q
%

+ +
AR
i

o

(2=16)

l

<) ®©)
~
Kre c.
X
\&e

N
|
Bl
C- egs(” i

~

where third order terms have been ignored and terms belonging
to the zero=order or average value equation have been left out,
In the subsequent discussion E is assumed to be zero in the
new frame,

In the new frame the equation for the conservation of
electrons becames

A A~ ’3 _
eV +aTp L =0, (217)

In accordance with the assumption that the ions are stae

LY ~JS
tionary v = 0 and NI = 0 so that Maxwell's equations for the

fluctuating quantities are

oy
AL e
V-E = % €, , (2-18)
A A
28
XE = =— =
VXE /ot ) (2=19)
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J (2=20)
and

~
V-Q ~0. (2=21)

Making use of the vector identity

~ A
VT x&z Z(Vek& )= \715) (2-22)
the wave equation (2=11) becomes
~ m 60 2 ,.\_/
\/(° = e V-E
2 ~
- _ 2 mée < e
= MEEpr) - T T E
S 5«2 (2=23)

The procedure to be followed now is to extract the
equations for the kth and (Jth Fourier component from the
above, solve for all fluctuating quantities in terms of the
turbulent velocities and substitute the results into the mo=
mentum equation. In order to linearize the resulting momentum

equation use will be made of the Heisenberg approximation as



developed by Tchen. It 1s convenient to discuss this approxi-
mation at this point; accordingly a short digression is made in
the next section summarizing the reasoning leading to the con-

cept of dynamic viscosity as introduced by Helsenberg and ex=
tended by Tchen.

2,3 Discussion of Heisenberg's Dynamic Viscosity

In order to see how Helsenberg arrived at his concept of
an effective dynamic viscosity to account for turbulent energy
transfer the discusslon, for the present, will be limited to a
neutral incompressible fluid in a state of turbulence. It is
assumed that Navier-Stokes equation®’ of hydrodynamics still

holds when the fluid 1s in a state of turbulence so that

RN o
_gft_: /U:L Xy
| SN
F L 9)(4 9)(1_ ) (2=2U)

where g~* 1s the kinematic viscosity snd P the pressure.
Writing !1 as an average plus a fluctuating part as was
first done by Reynolds, and in a frame for which V, is zero

1
there follows
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n~
Multiplying through by vy and using the summation cone
vention, the energy equation is obtained and is

Ad N AL N

TN

%(”LAQ) +.‘L’U,Z a&("@ %

--'—,&"(:?——P—_{_ ‘P‘*M' B/U'C
F (& ¢ .,LQX-L ¢

L
2

——
-

q

x

(2-26)

As 1s easily seen from (2-25) the second term in (2=26)
represents the nonelinear turbulent energy transfer. After
Fourier analyzing and obtaining the relation for the average
energy contributed by the kth Fourl=sr mode it will be shown
how Helsenberg revlaced the second nion-linear temm by an
equivalent dynamic viscosity term.

In order to obtain the average energy equation a relation
is needed for the contribution to the equation of a product
of two turbulent quantities A and B. For simplicity tildas
and explicit notation for the time devendence are amitted,
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The definition for the space average of the product of the two
quantities A(r) and B(r) is given by

ZA(D)B(L) 7
2o po
_J-,:ro(f)b(‘f%lf/J_JI . (2=27)

As before, the limits of space integration are taken to mean
integration over a volume large with respect to the character-
istic turbulent lengths.

The Fourier transforms for the quantities A and B are

cér

ALY) J Alk)e ~~dh (2-28)

and
/ /
Blx)=|wlk)e d2 . (2229
Substituting these quantities into (2-27) there results

4&(:)\6(‘5)7
(ki)

= Alk)BlA ) e = = /
= §§ e didedr, ,

Now noting that
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where S is the three dimensional Dirac Delta function and
integrating over dr and dk', (2=30) becomes

TS (e
<A(1‘)5(.‘!‘)7=-—£ A(@_)B(—@_)Ak ) (2=32)
v - go -

By the Convolution Thecrem (see Appendix B), the k'th
Fourier component of the velocity cross products involved in
the inertia term is

A A , 4
RIALY) :\S—";—Q(é’_"é’\ N (k)dk @)

To obtain the average kinetic energy (2=33) 1is used with
1 = J and with k' = 0 so that

A?r;'(b):jxv(’é)k(k)ik (2=34)
Y  Jel-rimplz)dl

The contribution from the kth component to the average energy
is then,

(W N (6) = Qary () ol -4 )
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In a simllar way the other terms of the energy equation

become
(55 22 ) Lo

= — 2742 W (L.)A)- (-4) (2-36)

and "
,)/U‘C Aoy
(-;l"ﬁ,”' At .
= ( /
¢ Aﬂg({s)g A Z VY

ZYAC) J\A)' (k) Wy (4- L’)J/,_ (2-37)

The pressure term does not appear since if the pressure

is written as

“ 20 ‘
Po=J Py et s, aw

and use is made of the incampressibility condition

o (2-39)
axd - O,

that 1s
/‘J""J('L—‘ ) = o, (2=40)



s T wa

it is seen that
Pl = 0, (2041)

indicating that the pressure term does not contribute to the
average energy.
Assembling all of the various terms involved, the equa=

tion for the average energy of the kth mode is

2
SEV (R (-A) = - 2 o'*'hz,«rc( )W (-4)

_ e ., | (2=42)
J'wdé F (-15 ) é'/))
where
;(éafi/) =
, »3
b )] e i (=)0

-0
TN R (ke ik L e

20

To indicate how the Helsenberg assumption is made it
is found convenient to define a spectral function F(_l_(_). This

i1s done as follows:

The average value of vi is given by
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»w , S0
4’”1’27'—\5 AF(: (r)d\_/_‘/j C]V‘ ) (2=414)
. po AV_ R
which according to (2=32) is
YR S (2-15)
W7 = V\Sg{'(é) d'zc(—é)dé .

Now instead of integrating over the whole of k-space the
integration can be limited to a spherical shell of radius
between k and k + dk and a spectral function F(k) defined by

2F(k)= -—fad aemeA WK i) @)

where ﬁ and e are the azimuthal and polar angles in spherical
coordinates, For isotroplc turbulence, F(k) is a function of
the magnitude of k only so that

3
- W 2
F(4)= v 2w 4o Afd(t_l)/oz(-é) . (2=47)
It 1is clear that the spectral function F(k) represents the

energy density of the kth mode in kespace since the average
kinetic energy is

4 2 #
2 <7 = f«So dh Flkd.  (2-18)
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Using the function F(k) in (2-42) and integrating from
0 to k, an equation for the total energy contributed by modes
< k results and 1is

2 k L2
3R ), TN = 207 LW AP F R Y o)

where

Wi = ‘fj‘h :h’i (4 #’ (2050)
e v 0 — o 2 7’ -—tiL )‘ -

The quantity wk is the transfer function and represents
the transfer of energy from wave numbers smaller than k to

those larger than k, Heisenberg's assumption was to write wk

in the form

h
wos g e e

where 0"; is a dynamic viscosity analogous to 4 ¥, the kine=

matic viscosity. The quantity 01:' is given by
2
po 1)y 7
e k[ [ BT oo52
o — A )
where K is a constant.

By inspecting the form of q(k,k'), it is seen that the
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&0
integrands 5 db W (b )iy (44 ) ana f d &' No-K Iy (4l )
Do -
are involved in the transfer function. Tcl'nen26 has shown that

by assuming

p
fkct_l-_/ﬂz(g’)@(ti»_é')z ~Chywy (k) gy, (2+53)

and
= (
! ¢ ¢
SR I KA = ik, ot

one obtains just the Helsenberg form of wk. These integrals
represent the phase correlations between the Fourier coef=
ficlents, The fact that the integrals are of this form is
shown by Tchen to follow from a statistical treatment of the
transport processes. An indication of the arguments used by
Tchen is given below.

Let the mean value of the displacement of a fluid element
be( £ 7 and the mean value of the second power of the displace-
ment be 4”,217 « PFollowing Kolmogoroff, Tchen assumes that the
ratios ££7 /4% and (227/'7' tend to a constant independent of
T as T approaches zero. The quantity T is the time elapsed
as the fluld makes the displacement involved. Using these as=

sumptions and the equations of motion it is shown that
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and

wo ,
d b v (-4 M’(;U?')
-p0 = - - -

- _ , % /!, /
2 =G A ki e) Tlh-4") (s

where o—(h-é’ ) is the dynamic viscosity corresponding to the
k'=kth mode.

In equation (2=49) the term Wk involves a transfer of moe
mentum from the k'th to the kth mode; thus, there is a sort of
collision between eddies of characteristic size 1/k' and 1/k.
The right hand sides of (2-55) and (2-56) indicate that this
process may be thought of as consisting of a dynamic viscosity
and an éddy gradient, It may be that these functions are dis-
tinct so that the gradient forming eddies are independent of
the eddies involved in the dynamic viscosity; in this way the
dynamic viscosity may be writtén as

r(&-4) = o] S(A-t)), (257)

which leads to
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00
5_’;’04& ’,u;,(é’— 4‘2) ”[(“'_4}/) = C ’%’”E(‘é)o’ (2«58)

and
® { / / ¢
Jl,;“i Uilh-L) (b)) = - Chywe(h) e, (2=59)

where the term "dynamic viscosity" will henceforth refer to the
quantity 4 .,

The two integrals (2-58) and (2-59) become (2-53) and
(2«54) for the k, 4?2 part of the spectrum of ¢ .

2.4 Use of Dynamic Viscosity in the Present Context

It will be seen in the following chapter that the non=
linear terms of equation (2-16) may be expressed in terms of
veloclty correlations, These velocity correlations are cone
veniently given by equations (2-58) and (2-59) above; accor-
dingly, 1t is assumed that these equations remain valid in the
case of the Lorentz gas. To put these equations in a form con-
sistent with the analysis to follow, they are Fourier analyzed

with respect to time ylelding
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J dab! wrylut o, kA o -4

~0o T ’
= ( Ay Wy (-w,=h)a (2-60)

and
oI Y.

Ja I (o et i 40

- ":4"1)"‘)2'(“)4_!») o (2-61)

which then become the fundamental equations for the devélop-

ment of the theory in the present work.
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CHAPTER III
EQUATIONS INVOLVING FLUCTUATING VELOCITY FIELDS

3.1 Fluctuating Quantities in Terms of Velocities

The equations relating the various fluctuating field
quantities to the velocity contain linear or first order
terms, and bilinear or second order terms. Assuming that terms
of second order are less than those of first order, an iter=
ative procedure is used in this section to obtain the fluce
tuating field quantities in terms of the velocities alone. The
conditlons for which the second order contributions are less

than those of first order will also be investigated,

3.1.1 First and Second Order Density Expressions

Assuming that 9P/Ay =0 and that the gradient of the av-
erage density is small; 1l.e., that the characteristic length
over which the average‘?ensity changes 1s large with respect
to the slze of the turbulence so that the plasma is homogeneous
on the average, the quantity Vo may be neglected and the re-
lation for the conservation of mass becomes

a

= W \7'(~"A">+B‘C'=o (3-1)
PV FEVIPZ/T e =0 >

Using the convolution theorem, the Fourier analog of (3-1)
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where the notations

NG = Ay (hyw) (3-3)
L gLt
Ay o= AT (4w )) (3=4)
and
" ,,
/U';’: - N’d‘( ,4:-1,_; weuw') (3=5)

have been used.

To solve equation (3=2) for F in terms of the velocities
alone an lterative procedure i1s used. Neglecting the convoe
lution term the first order approximation to e is obtained

and is

U

Mz T
=P WM (3=6)

Using this value for ‘O in the convolution term, the second
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order contribution to (" is obtained and is

/
Plz ): ? é;e ,L/;:% Afd'//#}”, (3-7)

To evaluate (3«7) the assumption of local ‘ransfer is made
so that only eddies with size and time characteristics close to
those of the k,t th eddy are involved in the contributicns to
the convolution integral. An examination of the Tchen integrals
(2=60) and (2=61) support this assumption since the velocity
phase correlation seems to be such that the integrand is a
peaked function behaving much like a Dirac Delta function.
Under this local transfer assumption and allowing for a factor

Ai. of order unity, (o(a) may be written as
N
C2) / /2 -j -
\P - A' W F A}' ’- (3-8)

Now making use of the Tchen integral ‘2-61) the final expres-

sion for the second order contribution to the density is

Mo

627 _ /fa.
(° {; TJ 7 (3=9)

where

(3-10)
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In order that the above iterative procedure be valid, it
must be that

eP1/160] < 1, -

leading to the condition

. 2
A'o"/fz < W. (3=12)

3.1.2 First and Second Order Electric Field Expressions

Turning now to the wave equation (2-23) and Fourier analy-
zing there results

™M w"-[k - CQ‘JEC»

=¢ C—"[’V—c + ?-Sf""fc’- -¢ A’i%

7 (3-13)

where wp is the plasma frequency given by
2 -
(3=14)

and the substitution
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P

(3=15)

has been made, c being the velocity of light in free space.

Agaln using the iteration procedure in conjunction with

equation (3«13), there results

where

and

with

(n ¢2)
Eé z ETC + F.

(3=16)

(3=17)

(3-18)

(3=19)



-}49-

which 1s a dimensionless constant involving the phase velocity
of the Fourier component and the veloclty of light,

sting (2=61) and (3«7) the second order expression for the
electric field (3-18) becomes

LQ) m z /!

Ww.
Ec=-3% ;%A, rAJafJ/q; . (3-20)

For the above iteration to be valid it must be that

— 2 ()
N ATt (3-21)
or
. L* | 2

/f/’!él‘d Ardl [l-szzj <’ (3-22)
. mame——

W N A‘hl”a J

L [1=¢2 R Ry
[ < w Fe]

there being no sum on 1.
If the axes are rotated so that the propagation vector is
along one of the coordinate axes, the above condition becomes

the inequality (3-12),

3.1.3 First and Second Order Magnetic Field Expressions

The next task is to solve for Bi in teyms of the velocities.
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From the Fourier analysis of (2«20) there results
. CMP
L /7. X 8 = _ﬂdf
— — M —
/
+ 2N ) '
" ?’fJéJw—é,/owE) (3-23)
also the divergence of B is zero so that

4y =0, (3-24)

After inserting the values for the plasma frequency and the
velocity of light in the three equations (3-23) it follows that

- = - -
ka Bt AZ’ By - = C—L{‘X] ) (3=25)

/k-z,'s,( e, By = - 'ZL[\/] (3=26)
and
’1% By —hy Bz ¢t (-%J, (3=27)
where
] & Y
m W / I /
LX]Z[C—E—I’( *4\5_/1/;)
+ wE’x] (3-28)
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and so forth.
Using (3=24) to eliminate B 2 » @nd eliminating B bet-
ween (3=25) and (3=27) it is found that

B)' = 4-32:"‘ ( b (%] -k (-'Z'J) . (3=29)

As before the first and second order contributions may be sepa-

rated so that

Lﬂ-)

B, = B + 8, (3-30)
where
8, (ke 1 ARY) G
and
LQ) 2
8, = i (k1 A [217), o
with

(DT (muwp n
(%] [ S rwe, J (3-33)
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It is easlly seen that the conditions that
2) ) ")
lb{,L I/IBJC | <] (3-35)
are that (3«20) holds and that

| )1 /] x1"”

These conditions will obtain when (3=12) applies so that (3=12)

. (3=36)

is the condition for the validity of the iteration procedure
in all cases,

Expressions for all fluctuating quantities in terms of the
fluctuating velocities have now been obtained., Assuming local

transfer and using Tchen's integrals these quantities become

A’.
&) RS-
P =0 "% » (3-37)
2
(2) ) S T ey
F =‘°A'f w2 (3-38)
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- Ay k""%'
4 (3-39)
_ @) m w2 ,
E; = -—EL‘iAlO'/‘lJ”;'fz;) (3-40)

By =2 (077 =4, (20 (3-41)
and
(
Py = ;‘-1:1(/‘_*&](2)- é&[%]u))y (3=42)
where

(3=43)

and

Jd -
Ao ——,;—kx] s

the other components of B being obtained by a cyclic pere

mutation of x, y, and z.
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3.2 The Generalized Momentum Equabic

The procedure now will be to use the expressions ob=
tained in the previous section to linearize the momentum equaw
tion so that all quantitles may be ~xpr<ssed in terms of the
Fourier components of the fluctuating ve ocities; thus, the

momentum equation (2-16) is

- = ~ (3=45)
L B —pVal-pa,

A
Now setting MV & f so that V< ?’ in accordance with

the form of the collision term or a fully ionized gas there

results
N~ ~
Yy _ £
v 7 . (3-46)
Since )
-— M
= +
(J P PJ (3=47)

the mamentum equation (3=45) becomes
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(3=48)

The second order terms in (3=48) which must be linearized are

and

T (pt)=3 “r” —

ﬁ? A DN"/

(3=49)
P ot aa )
N
~
& £ 2
) == =&
TS.(T’-(‘_ me L) (3=50)
e 5o -
Tleo =2 E(& <B)
T & (kg
Ty (08) = 5 (Zxg )c (3-52)
£
lelnt)= -2 7 M- (3-53)
To first order, the continuity equation is
) o
LAY |
3 ax' ot (3-54)
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so that
T.u:thfg.(%%)vt‘(éi(??)) (3055
where the identity
;};{; (AT ary) = Ay Q-%M?g }g (3-56)

has been used.,

t
Fourier analyzing and using the value for r(’ ) from the

previous section it 1s seen that
7] /
T\ = Chy S ay

/
‘éWJ/u""ﬁ W’
Cowr (3-57)

where T, (k, W) 1s the k, W Fourier transform of T,(z,t).
Making the local transfer assumption as was done in e=-

valuating (3=7), the integral
), P / / , " /
\.r Wy Ay Ny = A 4y j"’}: Y e  (3-58)

]
It 1s to be noted that the constant A1 depends on the ratio -

(B2 W)
|(’ l / ] f’ l and is zero for a semi-compressible plasma for
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(2)

which € may be neglected,

In accordance with the above and making use of the Tchen
integral (2=61) the inertia term becomes

T kW= A Ko wy N (3-59)
where

A =1- 4l (3-60)

For a semi=-compressible gas the quantity Al = ], otherwise
Al < 1.

Turning now to Tz(g,t) and using the Fourier expression
for the first order fluctuating electric field obtained from
(3=39) there results

(3=61)

Assuming local transfer, the quantity P/w& may be
brought outside the convolution integrals so that

(3=62)
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hy—h; | : do! /J a1
- -—J-_-g - ——" /
I:z‘j oyl N e A L} (3-63)

remain to be evaluated.,

Making use of relations of the type

A /I A
J\w' ”0 ¢ W=l ”’5”’2 (3=64)

and the assumption of local transfer, (3-62) and (3-63) may be

written

(3=65)

and

o' 3 (3-66)

where A2 and A3 are constants to be determined experimentally.
Both A2 and A3 are zero for a semi-compressible plasma since the
integrands come ultimately from second order terms in the dene
sity fluctuation. In this way the term T 5 (k, W ) becomes
- ¢
T, (k)= “?, M" 's [Az'u'

ke b
— A oA
Az ™ i TJL’”:‘] (3-67)
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Taking the average magnetic field to be in the z-direction,

the second order contribution due to the average magnetic fleld

1s
A / "N
T, (hyw)= wbj_k_j_; [V,
, )
1A A
~ N, a'Y] CALNY
X ’ (3-68)
where
| Ble
W, =
b m (3=69)

A A A
is the cyclotron frequency. The quantities s a,y, and a, are

the unit vectors in the directions indicated.
Proceeding as before

<
Ty lhw)= _ ¢ a/ "-’-‘M—,-o-'wb[/«rya,(

N" A ] A
- a * A’ .
x Y ¢ (3=70)

The velocity-magnetic field second order term is of a

rather complex nature consisting of contributions of the type
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Tq,;‘;zféaw) ’

r/_'_"‘a'tu"’”w; L
£ 2 y (3=71)

.

€ -
= -.;Su'd (_LA,’.

where the subscript 1 indicates the component of the contrie

bution. The other subscripts J and 1 take on different values
depending on which part of the cross product is under consie
deration., Using local transfer and Tchen's integrals these

contributions become

N & A
T oA 5 A 2 g

The evaluation of the collision second order term is

straightforward and 1s
/ {L2_
o (Ayw) = 2A L VoA o (5

Having evaluated the second order terms of the Fourier
analyzed momentum equation for a compressible plasma subject
to the condition (3-12) it is now possible to write down the
linearized from of the momentum equation including the effects
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of turbulence; accordingly,

%
[—lwti +A ks - lAaé%—d'fc

___’ 2 ’h‘\; , I& ,
uaa/kb_'z.p:]-g;_o_}z f

4—7,,,{E e “)]

(3=-74)
where Tl&i(]-{-’w ) 1s given by a sum over terms of the type
(3=72), and the fleld quantities other than the velocity are

glven by equations (3=37) to (3=-40),

3.3 The Semi-compressible Approximation

At this point the assumption will be made that the plasma
is seml-compressible. By the term "semi-compressible" it is
to be understood that the ratio of the fluctuating density

to the average density 1s small enough so that second order
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terms Involving density fluctuations may be nezi=cti-d., Under

this condition there results
A1 Al=o0 (’“)—90
(2)
Eg =0 T&U_v_.,u}.'o
T3 (b,w) -0 T}(g;w)_)o) (3«75)
and the momentum equation (3=74) beccmes

. — 2 ,
[-lw +v + 42 Juy

- =, ,2,, )
-— O@Ac—!w—h‘),”;,_"%“t;é()

A A A

+ Ty (b)), (3-76)

The quantity Tui@,w) involves contributions from the
second order term % ([}' x%‘ )e The x=camponent of this second

order term is

T, (k)=

Tim

Y A
(& xg ), . (3-77)

From (3=41) and (3=43) the y=component of the fluctuating
magnetic fleld is
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Q)

2
, M W
B, =ie (b -4 ],

(3-78)

Obtaining Bz by a cyclic permutation of the subscripts

and assuming local transfer, (3=77) becomes

,fo(ku)-—ﬁ 1-1 20‘(’*‘(&)&)( . (3=79)

where

/

/
Q- 5[” ) o) by

- 27} s w7, 1-Ar'a4. -
+7F ) E] (3-80)

Now from a Fourler analysis of the identity

aﬂfb )t)

J (3-81)

ax["’( (Y, t)_'] n(nrc(vt-)

where there 1s no sum on the index i1, and remembering that ex=
ponentials are involved in the Fourier analysis, it follows
from (2=61) that

/ L ,

/ (3-82}
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Using this result and (2-61)‘ in (3-80) the quantity
QX Y [-’12- @AYIVV
2 2 | )
+ (‘ky +4L% )N; - “_2'/2“2.2_/‘/%_-} .

(3=83)

From the above, the linearized form of (3=79) is
?

— W,
Tlw) == Tac(e) [- L&, by,

o 2
Ayt =L h b, ,v-tl o

so that the full seml-compressible momentum equation for the x-

component 1s

L-cw+v AP VI

2
4:32'2 o (| *’F)(:‘ ‘Ehx y My
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the other companents being obtained by a cyclic permutation
of the subscripts. The remainder of this study will be based

on the three momentum equations of the type (3=85).



CHAPTER IV
TRANSPORT' PHENOMENA IN A SEMI-COMPRESSIBLE PLASMA

4,0 Introduction

It 1s usual to employ a particle description to derive
theoretically the transport properties of an ionized gas, In
the case of a Lorentz gas without turbulence; i.e., ignoring
non=linear terms, it is possible to show that a macroscopic
point of view may be taken in cbtaining expressions for such
transport quantities as the conductivity, mobility, and the
diffusion coefficient, Ohm's law for fluctuating quantities,
for example, may be written

~S s

J = a g:) (4=1)
where

lod -E Ao

J=wenx, (4e2)

and where ¢~ is the conductivity tensor.

By inspection of (4=1) and (4=2) it is easily seen that a
mobility may be defined according to

~N n
L =LE, (4=3)
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and the conductivity tensor expressed as

<= ;f'”’g/g_«__. (4=b)

In the presence of turbulence, however, it is not pos=
sible to write Chm's law as in (4=1) nor is it possible to de=
fine a mobility according to (l=3) in view of the non-linearity
of the equations of motion, Because of this non-linearity the
fluctuations are of & random nature so that the fluctuating
field quantities have no ﬁnique Fourier decomposition; and the
mobility, for instance, which depends on the spectrum, is also
of a random nature,

In view of the fact that the Fourier analyzed equations of
motion of a turbuilent Lorentz gas as developed in previous chap-
ters are linear, it is possible to avoid the above difficulty
by defining the mobility according to

_/_V('i‘low):ﬁ“(éJw)Ea‘(é/ W)) (4=5)

or in component form as
o- (s)
Ué“—‘*“’): /“c'd' (_}:)w') ra' ,-427 W); (4=6)

where the superscript "a" indicates the summation over the
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various classes of modes of which there are six as will be
shown later.

To show how the mobllity as defined by (4«6) may be useful
it is necessary to make a camnection with this definition and
known quantities. Taking a case for which one class of modes
is dominant and considering two=dimensional turbulence for
simplicity, the x-component of (U=6) may be written

/\rx Cébjw) :/xx(é)w)e‘n(éﬁw)

+ My (4 ,w) E'y (4,w), (4e7)

Multiplying (4=7) by its complex conjugate there results
(R 2 MG U E (4)
T e (6 Ay () E, () £ ()
A 8) My, o) 614 By ()
4—/,{:;, (4)'2;(6)) (4-8)

where the dependence on (4) 1s to be understood.
In this chapter it will be shown that
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Meii (b yw)= Ay Cyer)

(4=9)

and that

2
Ey(hyw) = f(h w)E

w (A w),  (te10)

A
where f(k, W ) is determined by the so-called "dispersion"

equations,

According to the above, then, (4-8) may be written as
VR = T M, (13)

+ Muxlh) M W (&) F*(4)

+ M Ca) (B £ (R)

iy )82 (R ] 6 (R, e

In this way all of the quantities on the right hand side are
known except for the electric field term which may be derived
theoretically from a statistical analysis,

A further simplification is possible if the electric field
term in (4=11) may be written in the form
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L9 A 2
E,(A)= a(h)E, (4),

(4=12)

so that in integrating (4=11) over k-space in spherical co=
ordinates (k, 8 ,4 ), there results

Jmitars = Jati 42 ()
Mo RIS k) 4O
R e R (L) £ (2)
S ) FORT] €2 4
X i gdbd g ddo R

<M3x)? = é\f;(i.‘,)[%jx(a)
T Ml il (1) £% (4
+ M (Q)ﬂwy (4:) £(k)
+ iy () £ CR)] an g 4 6243

de o -2 ,
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where the electric fleld correlation may be measured in the
laboratory,

In certain specilal cases such as the incompressible case
where the fluctuations in the magnetic field are neglected, it
may turn out that the mobility and the function f‘(’k\) are inde-

pendent of k so that (U4=8) may be integrated immediately with

the result

i teIm 7= pd

+ Mo /42\,{: * + /fn/‘ay{'
+ /4:\/{-‘2 1LEUNIEUL)?. (115

The extension of the above to three dimensional turbue
lence 1is straightforward., When more than one class of modes
are present there seems to be no reason why cross products bet-
ween mode classes should appear since there is nothing in the
theory to indicate that the contributions to the fluctuations
from different classes are correlated, With this remark, the
extension to more complicated turbulence is easily made.

The expression for the mobility for different modes may be
obtained from the momentum equation by inspection as will be
seen, In general the result will depend on the wave=vector.

By using the so=called "dispersion" equations, the dependence
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on the magnitude of the wave-vector may be eliminated and the
index of refraction for the various modes obtained., Before
proceeding to a detalled analysis of certain degenerate cases ’
the general form of the momentum and dispersion equations will
be considered in the next section.,

4,1 General Direction of Propagation

For propagation in the general case the wave=vector come

ponents may be written in terms of spherical coordinates so
that

hyzhpindnt | @9

ey 2 hsin f a6 (4-17)
and

haz b d, (4-18)

Now neglecting the collision term and slightly restricting
the study to waves for which the phase velocity is much greater
than the velocity of sound so that the pressure tem may be
neglected, (3=85) becomes
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2
lwtds + LETO R T A7
TR TG my ey
. 5, &
* [ ng'(”'m '”ox’fj/t)'g.

= £ o1
mE'x) (4-19)

Lyt 2= (14+p) Ty J7x
- ? Wg
+-lw+ bir+ '%.%‘“*p)“'v\/}”y
-, 2
Tl urem, 10s

- &
= Ey ; (4=20)

and
L U_J%;('*P)’sz-j”%
W o
LG0T,
F It t 4o+ B ra)my e,

< —
-

Sle

E% 5 (4=21)
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In this way the dispersion equation involving the x=
component of the electric field is

E“'“’“Qz"“v' o + Y21y Ty
ke "LP e Am]/‘f
+ ["wb-f- "‘_/Lf{;.}-p) Ty
@ A:w]”)’
+[ (h‘(s)n,%

» A
R Z/L@ Tu%-'Ax?:] Ny =0, @

with similar equations for the y- and z-components.

Because of the obvious complexity of the momentum and dise
persion equations in the general case, only two degenerate
cases will be considered in detail; Fourier waves propagating
along the z-axis, and those propagating along the x-axis,

4,2 Propagation along the z-axis

The first class of component waves which will be studied
are those which propagate along the zeaxis so that

A
R = ka% v (4=26)
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Since the collislon term and the pressure term are being

neglected, (3=85) becomes

( Y+5) Ay - Wbﬁry =%EK (4=27)

and the other momentum relations are

Wy AL (Y45 Ay ':% Ey (w29
and
3 e
Iy =58 (29)
where
Y=-Cwt ki (4=30)
and
Wod”
Sz —cz (1+p), (4-31)

Solving for the velocities in terms of the electric fields
in (U4=29) to (U4=31) inclusive, the following equations are
obtained
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In order to eliminate k from the expression for the
mobility use is made of the dispersion determinant. This
determinant 1s obtained by substituting

D W k-
E =g Pplm- 48]

into the three momentum equations (4-27,28,29), The three

equations from which the dispersion determinant is formed are
(Y"'S'&)N’;-Wbﬁry zo) (4=37)
Wty +(Frs-)ary =0 (430

and

L
vy o W
(r+d TB)Ap=0, .y,

where

2
r W
A= C -(;f-{-’a. (4=10)

In order for the dispersion equations (4-37,38,39) to be

consistent it must be that
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r+s-d  -w, o
0 o a’+cw ‘ (o)

This dispersion determinant will vanish under several
different conditions yielding longitudinal and transverse modes

propagating in the z-direction. The nature of these modes will
now be investigated more closely,

4,2,1 Longitudinal Modes
Motion for the longitudinal modes is restricted to the Ze

axis so that v, ¥ 0 and v, " vy = 03 accordingly it follows
from (4=39) that

Wie
A S
b’+z.w =0, (4ali2)

that is

<

¢ 2 ¢ W
-cw+ 4:.0"4-«.:)5:0. (U=b3)

Since the cyclotron frequency does not appear in this ex-
pression these particular modes are independent of the applied
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magnetic fleld and are of the same form when no average mag-
netic field 1is present.

Defining the complex index of refraction n o a8

e = % ) (=t

which 1s the ratio of the velocity of light to the phase velo=
city of the wave, (U=43) may be written

2,2 -
. . & .
- LW + 4—"[.) +u 'Lf =0, (4=45)
where
t

is the characteristic turbulent frequency discussed in section
b, 4,

Solving for the camplex index of refraction there results
R we > ]
Ne = ¢ W [_l - ( w . (4=47)

At this point it would be well to recall the condition of
the validity of the iteration procedure which is (3-12)
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A.,’_%_\hék

. (4=48)

For a strictly semi-compressible plasma it was mentioned in sece
|}
tion 3.2 that A1 = 0 ; however, it is to be expected in an

actual case that A:'l will be finite. Defining
W 2
T= o Ilnel (4=49)

and for a value of A'l which may be as large as 1/10, a mode
for which T<‘ | may still be considered to be in the semia

compressible region; accordingly for the remainder of this chap=
ter the condition

T < | (4=50)

will be assumed to hold, This condition is, of course, un-
necessarily restrictive if AJ'_ < < 1/10,

From (4=45) in the case of negligible turbulence (2¥*00)
1t may be noted that

W= wy, (4=51)

which 1s the condition for the well-known plasma oscillations.

The mobility for the longitudinal waves under
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consideration in this section is most easily obtained from
(4«42) in the form

A
W
= =L 452
?f = C o’ (U4=52)
which when substituted in (4=35) results in

2 ) (4a53)
P

5o
g|€

Maz = ¢

which 1s the mobility for these waves. That these modes are

strongly damped can be seen from (4-47) and the following

discussion,

The complex refractive index may in general be written
4
Ne= N+ (Np (454)
where np is the refractive index and n; is the extinction index.

The significance of these two quantities may be seen in view of
(4=4l4) by writing the complex wave vector as

A:ﬁ. = é‘-n +(: él‘ ) (4=55)

where ER 1s the wave vector and l_c_I the attenuation vector.
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Since ni is imaginary for the longitudinal modes under disg-
cussion it follows that

kel =14,] (4e56)

indlcating that for these particular modes the amplitude falls
to 1/e of its original value in one wave-length, Note that the
damping comes only from the inertia term, attenuation of the
mode being due to momentum transfer to modes of higher k-value.
This type of momentum transfer from larger to smaller eddies

is in analogy with the hydrodynamic case for which the attenuae
tion of large eddies is also due to the inertia term. Evene
tually, of course, a critical eddy size is reached for which
the collision term, neglected above, becomes important and
serves as the ultimate mechanism for the dissipation of energy
by thermalization of the turbulent motion,

4,2,2 Transverse Modes
In this case the motion is transverse to the direction of
propagation so that v, = 0 and the velocity vector is confined

to the xy-plane. For this situation the dispersion determinant
(4=l1) yields

Yio-d=xcw, (4=57)
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or

(4=58)

which determines the complex index of refraction n, in terms of
the other parameters. For convenience the symbol "nc" will be
used in all cases for the complex index of refraction so that
it must be stressed that its form will in general change for
each different mode.

Since the quantity (3 1s given by (3-19) it is convenient
to miltiply through by (n° - 1) ylelding

-
Wty mE - (1252)
.._.‘:.:_jng
2
+(1e5E)-c B 2o,

(4<59)

with the possible solutions
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| [_::}w - (li: %)" %.]1 s (L=60)

w )
= indi<| (4-61)

must hold in accordance with (4-50), several special cases in-
volving different values of the parameters of the plasma will
be discussed,

Before beginning the discussion of special cases it seems

best to study solutions of the general quadritic equation when
a condition such as (4=61) holds,

The general quadratic equation is

2 -
a A +]9’( + C "o) (4=62)

with the possible solutions
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“’(-‘—115["“:/\][“&:\]' (4=63)

Imposing the condition

lax] < | (U=611)

limits the solutions in a way depending on the quadratic coef=

ficients, Several possibilities are as follows:

@ s |5 <.

Under these conditions, both roots satisfy (4-64),

@ i<, [ 5] > 1.

Here the roots become
e 1’ Lz
ax = .-lbtb 0«6(’— ﬁ;-C) (4=65)

with the condition that

'/2.<'

| acl (4-66)

If it happens that
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(4)

=88
E-IEAY

(4=67)

then

ax = £ ¢ 1/4. . (4-68)

<1, (4=69)

then both roots (4=63) can give valid results.

bl >,

Only the positive sign in front of the radical in
(4=63) may be used with the additional requirement

that
| — Yac) A '
b*l =1 (4-70)
implying that
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P <
b* ] | 4 (L4=T71)

X ~c

Having campleted this preliminary discussion, it is now
possible to begin an analysis of the transverse modes under
various conditions., The parameters to be varied are the charac-
teristic turbulent frequency L s the electron cyclotron
frequency (_Jb s and the Fourier frequency () .

4,2,2,1 Limiting Case of No Turbulence, In passing to

the case of no turbulence (L2~ 42 ), (4-59) becomes

- (£ I+ [Le )

wz2d 7 (4=73)

and 2

(4=7H)
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In order to calculate the mobility for this situation as
well as for the others in the remainder of this chapter, it is

easlest to use the relation
’+o6 =Adx W, (4=T75)

which follows immediately from (4=57).

Substituting in (4=35) there results

_ e ot lwy
Mux = 0 Qg caw,

(4=76)

with similar expressions for My s /MYK , and /“77 .
According to (4=20)

2
W
of = ( -ajf‘ 3, (4=77)

so that in view of (U«41) the mobility may be expressed in
terms of () alone for any particular mode,
4,2,2.2 Moderate Turbulence and Moderate Magnetic Field.

W
( P/,Q.<| ’ wb/wp<])

1) w | 4
< | } '
w. 1 i |
/ b ’ w wb W'o L0

Under these conditions (4«59) becomes
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ISR I

q -'

_%flc‘"[_n_w‘i‘t‘w]nc
a

0w

[ 4

-l e
W (4=78)

Since |b| > | only one root may be used, This
means essentially that the term _&a_né* may be

dropped so that

. W
- S ¢ w?.
Neg = ‘”gz — ¢ Wy
OQw ¥ W (4=79)
or
2 We .\ 2
L_ W —L
M"'Tﬁ[( -ﬂ-w)
. 3
.1..“”52"/2 (T xe)
wr | S ) (4-80)
where
w,
Ao B = —-— . (4=81)

Since equation (4=71) must also be satisfied, it must
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be that

w2

In the case of particularly low magnetic fields
and stronger turbulence, it might be that

— <<, (4-83)

in which case writing (4-=80) as

" =T D |
“1] e L(Exe)
\ ) (4=84)
there results
v(2)2 x
”R’(‘v Ry, (185)

To calculate the mobility we use the quantity
(5, Since {L?7W and from (4=83), IY\:'> ]
80 that

ne

a

|
e (4-=86)

&
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or
, W L1+ sz_nq
@ Rl QWF'*] . (4=87)

Substituting this value -for (3 in (4=76), the mo=

oiiity to second order is

o
/“xx"‘%@"2<l

F
_ wint_  w ik
2w+ ~ oy (4-88)

For high magnetic fields and relatively weak
turbulence, it may be that

W, .
—k—-: > | 5 (4=89)
W

in which case (4-84) yields

A .

‘ (4=91)
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2
w/
> “p

(2)

W 1 J
-Jbzl <‘. [ ¥ 1 7

In this situation (4«59) is

And+ -1 n2
a
- E?% 2 0.
(4=02)

Taking the positive sign first, ! 'al 2| s0 that
the first term may be neglected leading to

2
2_ W R
”C-‘Tfs.('*-a,—J (4=93)

which 1is simply the appropriate form of (4-74), the
non=turbulent case,

Similar results are obtained with the negative
sign unless W‘%v'?] in which case lb'< ' .
For this situation, the results depend on the quantity

W, h =
H%l‘”f%ﬁ("%) ‘l (4=94)

If ! ‘1‘;{\ é I there results
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2 L4y, W
”c:‘ﬁ_&('" w)f“'
2
W oW Wy -2
+“i;z1(";‘,h\ J
(4=95)
and
2 Wp\-I _u_/_é
Y\c=c(l— TI) WS (4=g6)

as the two roots of (4=92).

Ir \Lr '7 | the roots are according to
(465)

+ e [
w (w
0w W2 X
— ¥ ¢ 4
T 7 PL(I w) Je ) (4=97)
or if I ,77, the roots become
2 W l)-ri-/ ¢
nczj: -&Jﬁ W e ‘f (4-98)
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in accordance with (4=68).

Expressions for the index of refraction and the
mobilities may be obtained from these results in the
usual mamner,

W<|. 1 | ) A

W o5 W
) . ¥ ' ¥ v
™ W'p W J2

—

wp ~

For the higher Fourier frequencies considered here,
the first term in (4-59) may be neglected and the
results are similar to (4=74) with the appropriate
approximations,

%0,

In thls case, (4=59) becomes

W
%ncfr“’ = ne +6 =0 (4=99)

and |u ? 1 leading to the possible root

n 2 - L2 (:
which; however, violates the condition (4=50) so
that the turbulence is too strong for the iterative

procedure and l r“)"/l FU)I > .
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4,2.2.3 Moderate Turbulence and High Magnetic Field.

w
o<l s Yy <) ) -
P b

With one exception, to first order, these conditions lead
to the non-turbulent case (4-74), The one exception is when

wlyw-:.-l | so that bl < | . In this instance, (4=59)
is
py
Y_w 2 W

W/
e - A Ne—c—5=0)

W, (4-101)

with the roots

n2 = '_i D £ 4| +4¢ E’.Z%"‘], (4-102)

4,3 Propagation along the x-axis

The other degenerate case for which the equations in sec-

tion 4,1 become manageable is for propagation perpendicular to
the magnetic fleld., The axes are chosen such that

A
k= ha, (4-103)

Again neglecting the collision and pressure terms in

(3=85), the momentum equations become



G BN O TN G s AR s I @GE aE D 2D A Gk ) B EE am

-96-

You  —Why

d

T0
M
b ¢

WiV +( 7'+'§)/ij

3P
m
X

and
I+ o> Fep
where again
;= ;£w+h9a'
and
3= “’:f(w,m,

E
<
0

2
oA
o

(4=104)

(U4=105)

(4=106)

(4=107)

(4=108)

(4-109)
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where

O:)’(V‘J'S)-}-w:. (4=110)

Making use of (3=39) in the momentum equations, the dis-
persion relations are obtained and are

2
) ’&./.E,N- - -
(&r+csg ) Wy =0, (4-111)

W, N, HrFS=ol A =
b % ( 7 0 (4=112)

(r+s-wz =0, (3

so that the dispersion determminant is

. gé"
Y+ ™ -u/b o)
45~ A
o © I¥s (4=114)
where again
’ WL
= =E ,
d w/ (5 (4=115)
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4,3.,1 Longitudinal Modes

Longitudinal modes are those whose motion is confined to
the x-axis which 1s the direction of propagation so that
vx # 0 and no velocity component exists in the yz=-plane,

Under these conditions the mobility is easily obtained from
Y+5= o, (4-116)

which comes from the dispersion determinant. Using this re-
lation, the mobility is given by

Mae ==

The complex index of refraction may also be obtained from
(4=116) in the form

S

%éz( ne-1), (4=117)

-, N
—Cwr Bl %eiep)
2
-t p=o)

(4=118)

which may be rewritten
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K"c“‘[:{-(w" \>'“ e

(4=119)

4,3,1.1 Limiting Case of No Turbulence, In the case of

no turbulence ({1 = <© ) there results

w?.
nt=|- =%
¢ =1- gz (4-120)

so that the mode is non-propagating if W < Wp .
4.3.1.2 Turbulence with Moderate Density. Here the

case “I/n < | will be considered. Stnce ||| > |

’

1t must be that I""_:;C_'\< | o that
G (|- e
_Q-(I wl)

< |

[(-y-<1®

ple

(4=121)
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There are two general situations to be considered,

2

w | Z(-E)] <<t

Using equation (4=119) in the form

i E(1-4%,)
|- g wi EEA
[i(;ﬁ") -¢] (4e122)

2 Wy’
he=1- 5 (4=123)
and
wl_ 4 _‘(_Z—
¢~ Cw. (4=124)

The other possibility to be considered is

(2) \%ﬁ(p"ﬁé)l >1l.
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For this case, (4=112) becomes

Wb Wk 2
JL”Q*JLbfh OnC
2

' W - (u-l-l25)
4‘ L& (l-—‘;‘;) —0)
so that
2 1-_(1' »_-9*_ h/z' -1
ne :"w [I—L w('b:r") J (4=126)

is the only root.

4,3,2 Transverse Modes

For these modes, motion is restricted to the yz-plane
which 1s transverse to the direction of propagation so that
the dispersion determinant ylelds

2
(r+s-a)(F+< %,E)-l— wl =0,

(4=127)
which rewritten 1is
2 wl W
[ (/W] ’ .
[-ir K+ 8 wep-¢ 8 )
L
y ) '\ s W .
rafctc )+ .
£ Wz] vz -0 - (4-128)
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Employing the condition (4=50) in the form
W
———— 2
| & ne l <| ) (4=129)

equation (4=128) becomes

»

[-i+ 25 0rp) - 22 6)(-¢
PR

L
r W w/
tih ]+ a0,

W (4=130)

so that

w=J (4=131)

This is the root corresponding to the classical result slightly
modified by the turbulent term., In making the approximation
(4e129) the strictly turbulent mode; i.e., the mode which would

not appear in the absence of turbulence was discarded.

4.4 Sumary
Before going on to a numerical calculation of various

quantities connected with the degencrate cases discussed in
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this chapter it may be well to sumarize some of the main
results concerning the modes present in a turbulent plasma.,

By examining equation (4=25) and keeping in mind that the
quantity @ involves a k2 term in the denominator, it 1is
clear that each of the dispersion equations is of second deg-
ree in k2. The dispersion determinant formed from the coef=
ficients of the velocities in the three equations of type
(4=25) leads to a sixth order algebraic equation in k2 so
that in general six classes of modes are expected. It might
be mentioned that although twelve solutions for k result, each
of the k2 values represents two solutions travelling in op-
posite directions,

In previous sections, two degenerate cases of propvagation
along and propagation perpendicular to the applied magnetic
field were examined. General expressions for the complex in-
dex of refraction were obtained for each mode from which the
mobility may be calculated, Some of the salient aspects of the
modes studled are summarized in figures 4.1 and 4.2, The
various types of mode are indicated with a reference to the
section in which they were studied. The turbulent modes are
numbered with Roman numerals for future reference, Since any
motion of a physical plasma may be described by the three

classical modes as discussed in reference 28 taking the ions to
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immobile, it may be concluded that the turbulent modes are
representative of the mixing brought about by the nonelinear
terms of the equation of motion. The term "turbulent mode"

is employed in this work with the understanding that these
modes are actually pseudowaves compounded from the classical
modes. The relative importance of these turbulent modes is
dependent on the value of the characteristic turbulent frequency
L which was defined in section 4,2,1, It may be well to
discuss briefly the physical meaning of this important quan-
tity.

The quantity .9— appears in the various momentum equations
studied in two possible ways;

_ w2
= N (4=132)
and
Wz
- 4
Cz - 2w (H-G)) (4=133)

as can be seen from the typical momentum equation (4=58) upon

division by oo .,

The characteristic turbulent frequency may be written as

2me
N (4=131)
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where /\ is a characteristic interaction length between modes.

Now since

yXa

Ne 2 "5, (4=135)

a complex Foui'ier wave length may be defined by

27
Xc = —4; D/ (4=136)

so that (4=132) may be written as

A
C= .M (4-137)
C

indicating that the contribution from this term depends on the
ratio of the complex wavelength of the Fourier component to
the characteristic interaction length which approaches zero
as the turbulence decreases ( (L= & ),

Now writing (4=133) as
N A
c, Li'_"__é’(u.p)

= arn¢ eru'/ A+ (4=138)

or more simply as
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ry
Yy —L(1+p), .

-

where

W ) (4=140)

it is seen that the contribution 02 depends on the ratio of

the characteristic interaction length to the plasma wavelength

Mo
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CHAPTER V
COMPUTATION

5.1 Introduction

In this chapter the mobilities and indices of refraction
will be computed for the degenerate cases considered in the pre-
vious chapter., The results will be displayed in graphical form
in the final section.

In the momentum equations (4-27,28,29), use was made of
the following quantities:

ﬂ -
c = W, (5-1)
2
C
= o
JL /9 (5-2)
- |
= z-—I
@=1Lnc-1] ", (5-3)
= ~lw+ h2 w’
© SRR (5-4)
and
w?.
= FOr
5 <2 6. (5a5)

These variables are used in the present chapter also in
addition to the quantities
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\, - W '
/ “P ) (5=6)
)
R="7n (5-7)
and
W
= b

where R represents the ratio between the characteristic tur-

bulent interaction length and the plasma wavelength, The quan-

tity S is directly proportiocnal to the average magnetic field,

In the graphical representation of the results obtained in this

chapter, Y will generally be employed as the running variable,
With these new definitions, there result

= w [_-c'.‘-'—»/):'RY:}) (5=9)

SF WP R(H"(S)) (5=10)

and

L
A= wptyE€o
(5-11)
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5.2 Determination of the Complex Refractive Index

5.2.1 Propagation along B

Making the above substitutions in the dispersion equa=

tions (4=17,18,19) there result

Cymy - }% Yy =0,
v My + G5 A =0
and
L-cr njny+£;-,__7,u-z—_o)
where

' R '-L
Cyx [-¢ + ndrY +50re)=Ly f].

5.2.1.1 Longitudinal Modes. Since v, # 0,

¢ |
ﬂé:r‘&tl‘—;aj

and the index of refraction is

(5=12)

(5=13)

(5=14)

(5=15)

(5-16)
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or simply

”&[ [1- Y‘D
The results for k = k, and v, ¥ 0 are then
Re (ne*) =0
I'm(”f?):k"'[_l";,‘z]
S: | (1- )ﬂ¥)]

and

V»qI: - yqu ,

(5=17)

(5=18)

(5-19)

(5=20)

(5-21)

(5=22)

(5-23)
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It 1s to be noted that these results are independent of

the magnetic field, S.
5.2.1.2 Transverse Modes, This is the case for which

Ve ¥ 0, vy ¥ 0, v, = 0, and k, = k3 it follows then, from
(5=12,13) that

S\
C:'F (;,)2:0) (5=24)

S .
C;= (. (5-25)
By conventlon the sign is included in S so that S may be

positive or negative.

Since
- ‘2R -I-'@‘(H—)-}J' ] (5-26)
Cirlretn Ry +5 0P -ciafp | -

a quadratic equation in ni results which is

(5=27)
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This equation is of the form
2

where

and

The final results for the transverse modes are then

(5=28)

(5=29)

(5=30)

(5=31)

(5=32)

(5=33)

(5=34)

(5=35)
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. O

V [}
2 - Bt |BE bh| et 2
Mcz . 4

2 Ac ’
(5=33)
u/h., 6|
2
= IM (EQZ—QACCC)/R& (B(, -L’Ag_cc))
(5=34)
Y2 W
N,= | n? !
k= Incl e (5-35)
np=Ind| 2y,
(5=36)

and
Tm (n3)
. EA\ V’, = /ﬁe ("cz'\) (5-37)
which are convenient forms for numerical camputation,

5.2,2 Propagation Perpendicular to B
5.2.2,1 Longitudinal Modes. The relation for the complex

index of refraction comes from (4-118) and from the fact that
vz = 0 so that
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e _R. RN/ t
RYn + (y-KY-C)n(
+ L’, (I—-;;q.)‘: ©
This equation is quadratic in ni and is of the form

Y 2
ARng + BC nc +Cr :O)

where in this section

AK=RV)

- R _
Br= kY,

X

and

leading to the following results
.6

Y2
L =B [524Ag] A

e ® 2Aq

ﬂ5-38)

(5=39)

(5=40)

(5=41)

(5«42)

(5=43)

(5=44)
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XLan 62y
(5=45)
Y2 ¥
Ne= Nl e V2 ) (5-16)
! .
nr - InCL' /1/4"“\ %'/2. (5o47)

and

2
A Tmlne )/Re(ﬂf) . (5-48)

5.2.2,2 Transverse Modes. Again the propagation here is

along the x-axis, but the particle motion is in the yzZ=plane.
From (l4=111,112), the dispersion relations are

("’ +°y2- x y vy =0 (5=49)
and
W W W )'Vy"'O .

(5=50)

Unfortunately these equations do not show the symmetry
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obtained before in similar cases and there results a cubic in

ni which is

R2yIng + (2 @yi-2¢RY

‘\‘(is,)ncfr
2 R
t(gi-t the 20RY-3(5
CR O\ L2
e ;-,)nc
-2 $* -
+ (1 ya+>,q 7;)'0

This equation is of the form
C Y 2
V\c_ + Pc_nc +an¢ "‘QC =
where

g = Pt ¢ X

¢

c?c = Qpt ¢ 4>:E

and

RC,: Rn‘ +(:R£ .

(5=51)

(5-52)

(5=53)

(5=54)

(5=55)
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The quantities on the right hand side of the above equations '

have the values

FR: ;/L’-(l-yz))

and

To obtaln the reduced cubic, the substitution
L2 P
hc"" 2- '¢/3

" made leading to

2o+ At +B = O,

(5=56)

(5=57)

(5=58)

(5=59)

(5=60)

(5=61)

(5=62)

(5=63)
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where
A= Ji( 36, -F) (564
and
B.= 2"‘5(“5&?"7 fQer27Re). (s65)

There are essentially two methods of solving the reduced
cubic. One of these involves the taking of cube roots and leads

- to same difficulty in combining the contributions to Z. The

method used here is that first published by Cardan (1545).
First making the substitution

A
F=T- Ef'- ) (5-66)
there results
| 3 A3
T - 5713 ¥B8.=0. (5-67)

It 1s easily seen that this is a quadratic in T3 of the form

b 3 A
T 4+ BT - 3'%::0. (5-68)
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In solving (5-68) methods similar to those used in solving
the quadratic equations obtained previously are used, One
value for T3 1s then selected, It turns out that the other
root of the quadratic will lead to the same results obtained
below, but in a different order.

Now the following quantities are formed

T=T, (5-69)
Ta= W, (5-70)
T=whT, (5-71)
where
w= = _0‘5+‘:£;. (5-72)

1s one of the cube roots of unity.
The results for the square of the complex index of re=

fraction for the transverse modes follow and are

Ao _ 8

2 —= _ e

2 7

= - A¢ - %
WC" Tﬂ- JT-L 3 (5=74)
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and
2 Re G
Ne3=T3- 31,~ 3 - (5-75)

The refractive index and the extinction index may be obe
tained by using (5-46,47,48),

5.3 Determination of Mobilities

5.3.1 Propagation along B
For convenlence, the quantity yw P is factored from the

mobility tensor (4-35) so that the mobility components are of

the form

VTR T ARITSE +w,2 ], (5-76)
f

In order to obtain generalized mobilities the above components
are written in terms of R, S, and Y defined above, The results
of these substitutions are summarized below,

5¢3.1.1 Longitudinal Modes, For modes for which v = Vs

L

i

Y). (5-77)

Maa=

5¢3.1.2 Transverse Modes. For these modes the motion is




ek

-125=

in the xy=plane, The mobilities for this case are

e 1 ¢
M -_-"'"“(."C.
SN u N (5~78)
v @+ 2S
M =S¥ (ng =l (5-79)
&\/ MW,Q[ J_,pq_g_s )

Mrx > Myy (5-80)

/"xy - _/4\/)( . (5=81)

Here again S can be less than zero., The sign of S indi-
cates the polarization of the mode,

5.3.2 Propagation along the x=axis

Expressions for the mobilities are obtained from (4=109)
and (4«110), These are summarized below.

5¢3.2.1 Longitudinal Modes., From (5-9) and the general

expressions for the mobillities

/{H_= % P[’ $Y (02 -g):) (5-82)

5.3.2.2 Transverse Modes, From (4«110)
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.+n§ky+§(t+@)3
97
then from (4=109)
HMxx = y -{+niry
FSoe L&)

Ay =RByieniry)
2

4 4
Wo

Y0

It 1s to be noted that

(5=83)

(5-84)

(5=85)

(5=86)
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/’{xy‘ “HAyx - (5-87)

5.4 Graphical Results

Using the IBM 1107 computer at Case Institute of Teche
nology, the more important expressions of this chapter were

evaluated for various values of the parameters

7= "/ ) (5-88)
R= Wr/a (5-89)

and
>+ Wb/‘”r’ - (5-90)

On the graphs the quantity

-
M'—'a' = mer‘) l/lédl (5-91)

represents the mobllity and the quantities ng and n, are re-

presented by their absolute values, In all calculations
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the parameter
W
: — 1
T =3 1n ‘, (5-92)

which 1s realted to the assumption of semi-compressibility
is less than 2,0, |
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FIGURE 5.1 INDEX OF REFRACTION FOR PLASMA OSCILLATIONS
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CHAPTER VI
CONCLUSION

Before turning to a discussion of the graphical results of
the preceeding chapter, it may be well to summarize briefly
some of the results obtained earlier,

In accordance with condition (3=-12), a parameter T was
defined in section 4,2,1 which describes 1limits for which a
real plasma may be considered semi-compressible., In order to
use the results of this work in any real situation, the quan-
tity T must be kept lower than a certain maximum value.

Another parameter introduced in section 4.2.1 which has
been frequently used is the characteristic turbulent frequency
_ﬂ. o The quantity.ﬂ- was shown to be related to a charace
teristic Interaction length for correlation between the modes
of turbulence,

The character of the modes present in turbulence is in-
dicated by inspecting the general dispersion equations of the
type (4=25) which show that in general six modes of wave motion
are to be expected. Three of these modes turn out to be modi-
fied classical modes as obtained for a non-turbulent Lorentz
gas. The other three modes are mixed and express the coupling
introduced by the nonelinear terms in the equation of motion;

these modes are designated by the term "turbulent modes". In
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the degenerate cases of propagation along and perpendicular
to the average magnetic fleld the nature of these six modes
is as outlined in figures 4,1 and 4.2.

Turming now to the graphical results, figure 5.1 indi-
cates the behavior of the index of refraction for plasma
osclllations in the presence of turbulence. In a none
turbulent Lorentz gas these oscillations do not propagate
when the pressure is neglected. In the presence of turbue
lence propagation takes place although the damping is very
strong, the extinction index being equal to the index of
refraction, As the turbulence is increased, the phase velocity
glven by

<
N’, = AR (6=1)

increases,

Figures 5.2,3,4 indicate the behavior of the complex index
of refraction for the ordinary modes. To the left of the
singular point near the plasma frequency these waves are
strongly damped as 1s indicated by the fact that the magnitude
of the index of refraction (nR) is much less than the magni-
tude of the extinction index (nI). To the right of the critice
al point propagation takes place with some damping which in-
creases with increase in turbulence. As the turbulence is
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increased 1t 1s also noticed that the critical point is dise
placed to the left as 1s to be expected from the presence of
a viscosity=like term,

Flgure 5.5 portrays the behavior of the index of re-
fraction of turbulent modes (II) with varying magnetic field
strengths. It 1s to be noted that for this type of turbue-
lent mode, as with all of the others, the index of refraction
is approximately equal in magnitude to the index of extinction
so that the turbulent modes are all strongly damped.

Figure 5.6 shows. the behavior of the index of refraction
for all three mode types found for propagation perpendicular to
the average magnetic fleld, The mode designated as "root 2" is
identified as the elliptically polarized mode since the index
of extinction is much less than the index of refraction indi-
cating propagation with slight damping. The other two modes are
turbulent or mixed since the damping is severe. One noteworthy
feature of the curves as shown 1s the similarity between results
for "root 2" and for "root 3" indicating that these two mode
types may be related, The same similarity is te be found be-
tween the curve for "root 1" and the behavior of the index of
refraction in figure 5.5 for turbulent mode (II), The ine
ference to be drawn from these similarities 1is that the turbue
lent modes do indeed represent a mixing of the three possible

types of modes found in a non-turbulent Lorentz gas. Another
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way of stating this 1is that excitation of one particular mode
will result in the excitation of others including those with
propagation vectors in other directions. The impossibility of
a one=-dimensional turbulence is rather clear in view of these
ocbservations,

The results shown in figure 5.7 are most significant in
that in the presence of moderate turbulence (R = 1.0) there
is clearly a critical magnetic field above which the magnetic
field dependence of the mobility is of an entirely different
character. For sufficiently high magnetic fields and for
R = 1,0 the mobility shown is proportional to 80'5 in contrast
to the B2 dependence of the non-turbulent case. This type of
behavior has indeed been observed in the D.C. mobilityl’ so
that the results presented here are highly suggestive.

Figure 5.8 indicates that the cross-diffusion, Mxy is but
little affected by the presence of turbulence,

Flgure 5.C 1s a study of the behavior of the mobility for
turbulent modes (II) associated with propagation along the mag-
netic field. The curves are incomplete due to the fact that the

parameter T was to be less than 2,0,

s and M

Figures 5,10,11,12 show the behavior of Mxx’ M y

Xy
for the elliptically polarized modes propagating in the x-
direction. Of particular interest is the fact that ny and

Mxx behave quite differently with increase in turbulence above



-147-

a critical magnetic field,

The graphical results are concluded with figures 5.13 and
5.14 which indicate the behavior of the mobility of the two
turbulent modes (IV,V) associated with a propagation vector
in the x-direction,

To conclude it may be well to discuss possible ways of
relating the results of the present study to experimentally
verifiable quantities,

At several places in the preceeding pages, expressions
and values are obtained for the indices of refraction and
extinction, It may be pbssible to excite a particular mode
above 1ts normal level in an already turbulent plasma, and
by means of measuring the decay of the mode at that frequency
a check could be made on the values predicted., The modes
present in the turbulence could be inferred from a study of
the behavior of the index of refraction, the dynamic viscosity
being an experimental parameter,

In certain special cases it may be possible to determine
the relations goverming velocity correlations and electric
field correlations or correlations of other types. Indications
of how thls may be done are discussed in the introduction of
chapter four.

It 1s also possible to study the phenaomenon of diffusion
by defining a diffusion coefficient such that
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Y

wy = Ogy

S p (6=2)
Now from (3-85) leaving out the electric field term since

diffusion is being considered, and neglecting V there results
1

C-Cw + Nt 7A/' = -la ’e-
Tuw, D’Y“ﬁ “Y] ‘1&
;:;n. [‘%l‘x’w""y
+(4ely by ), - -,’:/zxéz_ﬂfz,j, (6-3)

Since the dispersion relations are identical for the cale
culation of the diffusion and the mobility, the only change in
the analysis is that where % &, occurs for the mobility,
the term —oa." gﬁ- appears so that the diffusion coef=-
ficient is given by

", .
DL’J T-rea My (6=4)
Note that vi here is that part of the contribution to the velo-

city due to the turbulent density gradient, and is in general
much smaller than the vy contribution of the turbulent electric
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field,

If Di 3 is independent of k then the average velocity
correlation due to the average A.C. density gradient may be
found in a mamer similar to that used in developing equation
(4=15),
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APFENDIX A
SPECIAL SYMBOLS

For a semi-compressible plasma = 1 otherwise less than 1.

For a seml-compressible plasma = 0 otherwise greater
than 0,

Complex wave vector,
Wave vector; real part of k.
Attenuation vector - imaginary part of L,

e 1 =1
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n Complex index of refraction,

ne Index of Refraction; real part of n,e
np Extinction Index; imaginary part of n,e
R - mp/ﬂ .

S = mb/m »

SN Indicates sign used in quadratic formula; may be +1
or =1, SN = +1 indicates a turbulent mode; SN = =1
indicates a classical mode,

T - B,

T1,2,3,ll (k,w) see section 3.2,
\4 Phase velocity = “’/k‘R .
vi = Y(@g’w')

o vk k', e,
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= m/wp.
2
W
£
= i o B
= —}———‘
% -1

2g

- 2 (144,
2

= D(E'nw!)

= D(E-E'.w‘m')o

Dynamic viscosity.

Dynamic viscosity (Heisenberg),

e?p

2
meo

= c2/a,
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APPENDIX B

FOURIER TRANSFORM OF A PRODUCT

Let A(r) and B(r) be two space dependent quantities
such that

A(ﬁ)--jA(é')e‘éxclé’ (B-1)
and

}3(!):58(5\& dA . (B=2)

It 1s desired to find an expression for the quantity AB(k)
where

Ilz‘v.

v (AR DA
A(f)B(:’:)=SAB(L~)c lb. (B-3)
Now from the Fourier integral theorem
-chy

AB(L;):%FSA(Y\ Blx)e dy , (B=b)

and substituting for A(r) according to (B=-1l), there results



l

50
ABLK) |
. g‘,‘;asjug'm(f)e"M‘“"\fu_&: D e
Now the Fourdier transform of (B-2) is
B (&) - 'g'?sjeme‘“:‘af , . (86

S0 that integrating (B-5) over r first, it follows that

Ab(A) = A (AN B! 5

which is the convolution theorem.
The above demonstration still holds if k is complex in

which case the imaginary part of k strictly belongs to the

amplitude so that
H

T
A(‘f)'—JA-(‘:;'): - e"‘é“feléé. (B-8)
where
45 = ”_'-R +L’4_’~r .

(B=9)

Note that this extra amplitude factor cancels in the proof,
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APPENDIX C
TRANSPORT IN THE ABSENCE OF TURBULENCE

C.l1 Mobilities
In the absence of turbulence, the mobility does not de~
pend on the refractive index nor on the type of mode involved

and is given byzu

.—-—D-—— —— 0
\ |
//( = L. :..‘:./—’k 1‘? O
'4
L
0 W
o ) (C=1)
where collisions are neglected and
D= Wba—-wz. (C=2)

In terms of the general parameters of chapter five
equation (C=1) becomes



KNl 5o, 5 0
= Pl Y0, 0,
/
\ < © —;—; 2 (C=3)
where
Dq = \/(_S__;_‘). (C=b)

C.2 Refractive Indices

C.2,1 Propagation along B

For a wave in a non-turbulent Lorentz gas propagating along
the average magnetic field, the index of refraction is deterw
mined from the dispersion relations which follow from
(4=37,38,39) neglecting turbulent terms so that

2
wp
- ' - !
Cwa =l =3 pawu;(q- W,

~
¢ -4
TeWNy R LT Py M (C=6)
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and
3
’ W

From (C=7) it 1s seen that

(C=8)

and
Z [ '
I"IC M) (C=9)

which is the result for the usual non-propagating electron
plasma oscillations in the absence of the pressure term.

The other two dispersion relations yield

nt- | !
C - - Sy+yl) (C-lO)

where S may be positive or negative corresponding to ordinary

and extraordinary waves.

C.2.2 Propagation Perpendicular to B

In this case the dispersion equations are
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&
el
(-éwriZ )~ wywy=0,

2
-’ ' w
W+ (-lw - Tf@)#‘y::o

and
(-¢ g
Ltw ~¢ w (l)/‘l'?_:a)
leading to
Nz |- =
¢ - ’- \/z.

for the singular longitudinal waves and to

| = Vy2
S2=(y?-1)

NSz |+

for the elliptically polarized transverse waves.

(C=11)

(C=12)

(C=13)

(C=14)

(C-15)
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APPENDIX D
TWO DIMENSIONAL TURBULENCE

A considerable simplification takes place when restriction
is made to two dimensional turbulence., Assuming that v, " 0 and

using the momentum equation (3-85) there result

cwt At S50ke) lky

*“"-2)]4&

w2 .
+ [- Wb"%'_ 4-:—;}2(i+(5) l!g‘ty_)ﬂ‘y
TSE, ) (D-1)

Lwp,—- & %’5—1( FB) Aoy lzy]Al'K
+ E-c.w+ ”_c.__+ (I
"'@x"‘x ‘H‘gz)ﬂ/“y

- B -
"»'»"Y (D=2)

and

3
"2 1"" <'4—(‘)"‘2~(""n”‘"’1\y”/) =15 7o

o (D=3)
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If the ze-camponent of the electric field,

.'C".“_’z 2
By = -t 5P Ay (ymydhyny) (D-b)

is examined in the light of (D=3) it is seen that there are
two cases.,

Ifk ¥ 0,
[ ‘Ml P 2 4\3 (H'P)] (1'!»‘”_

+hyry) =0 | hat O

) (D=5)
which since v, = 0 implies that
(1) |
P =9, Az t0. (D-6)

The other altemative is that kz = 0 in which case (D=6)

does not hold. The latter case will be considered first,

D.1 Propagation perpendicular to B

Since k 1s in the xy=plane

Ax: 'LCoz.e)

(D=T)
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by = hoain b (D-8)

and the momentum equations are
L-dw+ ”02""1-1— —ﬁ-(j
+@)M29_'] ay
+Twy, - 4wl (1

+ R) A bz 6] Wy = %Ex

(D-9)
and
Lo, é;’—f(wp)mem@jv;
, n2e? ‘
TLhdws ey |
+ W e,

J(Hﬁ)mé‘]/"“ * %€y, (o)

from which the mobilities may be obtained,

Using (3-39), the dispersion equations are
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+ [—Wb --'i%ﬂ(t.{-p)m;\@ cex b

(w2008 cnblary =0
+ y>c j 4 (D=11)

and

2 :
[Wy- £ % (1+p) 26 ccay
+Cw %né‘mte 2L
+[-Cw+ “°W+ ;{Fmp)mé
' _6

- Lw

('—MC @)j”y—-o (D=12)

which leads to a quartic equation in n’ which may be solved

numerically.

D.2 Propagation Parallel to B

If the propagation vector has a z-component , 1t must have

camponents in no other direction so that v, = 0. These waves
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are identical to those studied in section 4.2.2.

S

= SN eEg

By using the relatlons obtailned above, the transport

properties of twoedimensional turbulence may be studied in

detall since the important quantities may be obtained

numerically for propagation vectors of arbitrary direction.
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